Capacità e gli spazi H^1 e H^1_0

1. Una nuova classe di equivalenza

Sia u un elemento di $H^1(\mathbb{R}^d)$, ovvero una classe di equivalenza rispetto alla seguente relazione di equivalenza per funzioni misurabili:

Definizione. Date due funzioni misurabili

$$\varphi: \mathbb{R}^d \to \mathbb{R}$$
 e $\psi: \mathbb{R}^d \to \mathbb{R}$

$$\varphi \sim_{ae} \psi$$

 $\varphi:\mathbb{R}^d\to\mathbb{R} \qquad \text{e} \qquad \psi:\mathbb{R}^d\to\mathbb{R}$ diciamo che $\varphi\sim_{ae}\psi$ se esiste un insieme $\mathcal N$ di misura di Lebesgue nulla in \mathbb{R}^d tale che

$$\varphi(x) = \psi(x)$$
 per ogni $x \in \mathbb{R}^d \setminus \mathcal{N}$.

Sappiamo che possiamo trovare una funzione

$$\varphi_u: \mathbb{R}^d \to \mathbb{R},$$

misurabile e nella classe di equivalenza u, con la seguente proprietà:

Esiste un insieme \mathcal{N}_{φ} di capacita nulla in \mathbb{R}^d tale che

(1) Esiste un insieme
$$\mathcal{N}_{\varphi}$$
 di capacita nulla in \mathbb{R}^d tale che
$$\varphi_u(x_0) = \lim_{r \to 0} \int_{B_r(x_0)} \varphi_u(x) \, dx = \lim_{r \to 0} \int_{B_r(x_0)} u(x) \, dx \quad per \ ogni \quad x_0 \in \mathbb{R}^d \setminus \mathcal{N}_{\varphi}.$$

Inoltre, se

$$\psi_u: \mathbb{R}^d \to \mathbb{R},$$

è un'altra funzione con la stessa proprietà:

Esiste un insieme \mathcal{N}_{ψ} di capacita nulla in \mathbb{R}^d tale che

Esiste un insieme
$$\mathcal{N}_{\psi}$$
 di capacita nulla in \mathbb{R}^{d} tale che
$$\psi_{u}(x_{0}) = \lim_{r \to 0} \int_{B_{r}(x_{0})} \psi_{u}(x) dx = \lim_{r \to 0} \int_{B_{r}(x_{0})} u(x) dx \quad per \ ogni \quad x_{0} \in \mathbb{R}^{d} \setminus \mathcal{N}_{\psi}.$$
allera le due funzioni (c. e. ψ), coincidene sull'insieme

allora, le due funzioni φ_u e ψ_u coincidono sull'insieme

$$\mathbb{R}^d \setminus (\mathcal{N}_{\varphi} \cup \mathcal{N}_{\psi}),$$

dove possiamo osservare che anche $\mathcal{N}_{\varphi} \cup \mathcal{N}_{\psi}$ ha capacità nulla. Ora, definiamo la seguente classe di equivalenza:

Definizione. Date due funzioni misurabili

$$\varphi: \mathbb{R}^d \to \mathbb{R}$$
 e $\psi: \mathbb{R}^d \to \mathbb{R}$

$$\varphi \sim_{ae} \psi$$

 $\varphi:\mathbb{R}^d\to\mathbb{R}\quad\text{ e }\quad \psi:\mathbb{R}^d\to\mathbb{R}$ diciamo che $\varphi\sim_{qe}\psi$ se esiste un insieme $\mathcal N$ di capacità nulla in \mathbb{R}^d tale che

$$\varphi(x) = \psi(x)$$
 per ogni $x \in \mathbb{R}^d \setminus \mathcal{N}$.

È immediato verificare che le funzioni ψ_u con la proprietà (2) sono tutti e soli gli elementi della classe di equivalenza di φ_u secondo la relazione \sim_{qe} . Quindi, possiamo identificare le classi di equivalenza $u \in H^1(\mathbb{R}^d)$ (generate dalla relazione \sim_{ae}) con le classi di equivalenza generate dalla classe di equivalenza secondo \sim_{qe} di una qualsiasi funzione φ_u con la proprietà (1). In altre parole, d'ora in poi, tutti gli elementi u di $H^1(\mathbb{R}^d)$ saranno classi di equivalenza secondo \sim_{qe} ed ogni rappresentante φ_u di u avrà la proprietà (1). Come al solito useremo la stessa lettera per indicare la classe di equivalenza ed i rappresentanti che la generano.

2. Convergenza cap-quasi-ovunque

Definizione 1. Diciamo che una proprietà \mathcal{P} vale cap-quasi-ovunque in \mathbb{R}^d se esiste un insieme \mathcal{N} di capacità nulla in \mathbb{R}^d tale che $\mathcal{P}(x)$ vale per ogni punto $x \in \mathbb{R}^d \setminus \mathcal{N}$.

Teorema 2. Sia u_n una successione in $H^1(\mathbb{R}^d)$ che converge forte- H^1 ad una funzione $u \in H^1(\mathbb{R}^d)$. Allora, esiste una sottosuccessione u_{n_k} che converge a u cap-quasi-ovunque.

Proof. A meno di estrarre una sottosuccessione, possiamo supporre che

$$||u_{n+1} - u_n||_{H^1(\mathbb{R}^d)} \le 4^{-n}$$
 per ogni $n \ge 1$.

Sia \mathcal{N} un insieme di capacità nulla tale che

$$u_n(x_0) = \lim_{r \to 0} \int_{B_r(x_0)} u_n(x) dx$$
 per ogni $x_0 \in \mathbb{R}^d \setminus \mathcal{N}$ ed ogni $n \ge 1$.

Mostreremo che esiste un insieme Ω di capacità nulla tale che:

- (a) per ogni $x \in \mathbb{R}^d \setminus (\mathcal{N} \cup \Omega)$ la successione $u_n(x)$ è di Cauchy;
- (b) il limite u_{∞} ha la proprietà seguente:

$$u_{\infty}(x_0) = \lim_{r \to 0} \int_{B_r(x_0)} u_{\infty}(x) dx$$
 per ogni $x_0 \in \mathbb{R}^d \setminus (\mathcal{N} \cup \Omega)$.

Step 1. Costruzione di Ω . Per ogni n definiamo gli insiemi

$$\omega_n := \left\{ x \in \mathbb{R}^d : \frac{1}{|B_r|} \int_{B_r(x)} |u_{n+1} - u_n| > \frac{1}{2^n} \text{ per un qualche } r \in (0,1) \right\},$$

$$\Omega_n = \bigcup_{k=0}^{+\infty} \omega_k$$
 e $\Omega := \bigcap_{k=0}^{+\infty} \Omega_n$.

Fissiamo ora R>2 e consideriamo una funzione cut-off φ_R tale che

$$\varphi_R = 1$$
 in B_{R+1} , $\varphi_R = 0$ in $\mathbb{R}^d \setminus B_{2R}$.

Allora, abbiamo

$$\operatorname{cap}\left(\omega_n; B_{2R}\right) \le (2^n)^2 C_d \int_{B_{2R}} \left| \nabla \left(\varphi_R(u_n - u_{n+1}) \right) \right|^2 dx \le \frac{C_d}{4^n}.$$

Di conseguenza,

$$\operatorname{cap}\left(\Omega_n; B_{2R}\right) \lesssim \frac{1}{4^n},$$

ed infine

$$\operatorname{cap}\left(\Omega;B_{2R}\right)=0.$$

Step 2. Dimostrazione di (a). Se $x \notin \Omega$, allora $x \notin \Omega_n$ per un qualche n e quindi

$$\frac{1}{|B_r|}\int_{B_r(x)}|u_{k+1}-u_k|\leq \frac{1}{2^k}\quad \text{per ogni}\quad k\geq n\quad \text{e per ogni}\quad r\in (0,1).$$

Di conseguenza, passando al limite per $r \to 0$, otteniamo

$$|u_k(x) - u_{k+1}(x)| \le \frac{1}{2^k}$$
 per ogni $k \ge n$.

Step 2. Dimostrazione di (b). Sia $x \notin \Omega \cup \mathcal{N}$ (quindi $x \notin \Omega_n \cup \mathcal{N}$ per un qualche $n \geq 1$). Usando il punto precedente ed il fatto che $(\Omega_k)_{k>1}$ è una familglia derescente, abbiamo che per ogni $m \geq n$

$$\left| u_{\infty}(x) - \int_{B_r(x)} u_{\infty} \right| \leq |u_{\infty}(x) - u_m(x)| +$$

$$+ \left| u_m - \int_{B_r(x)} u_m \right|$$

$$+ \left| \int_{B_r(x)} u_m - \int_{B_r(x)} u_{\infty} \right|$$

$$\leq \frac{4}{2^m} + \left| u_m - \int_{B_r(x)} u_m \right|.$$

Ora, usando il fatto che $x \notin \mathcal{N}$ e passando al limite per $r \to 0$, otteniamo

$$\lim_{r \to 0} \left| u_{\infty}(x) - \int_{B_r(x)} u_{\infty} \right| \le \frac{4}{2^m}.$$

Infine, siccome m è arbitrario, abbiamo la tesi.

3. Tracce

Se $Tu \in L^2(\partial B_r)$ è la traccia di una funzione di Sobolev $u \in H^1(\mathbb{R}^d)$ e se $\varphi_u : \mathbb{R}^d \to \mathbb{R}$ è una funzione con la proprietà (1), allora φ_u è definita per \mathcal{H}^{d-1} -quasi-ogni punto su ∂B_r e

$$Tu = \varphi_u$$
 in $L^2(\partial B_r)$.

In altre parole, la traccia di u è la restrizione del rappresentante φ_u .

4. Quasi-continuità

Teorema 3. Consideriamo una funzione di $H^1(\mathbb{R}^d)$ e una sua rappresentante $u: \mathbb{R}^d \to \mathbb{R}$ tale che

$$u(x_0) = \lim_{r \to 0} \int_{B_r(x_0)} u(x) dx$$
 per cap-quasi-ogni $x_0 \in \mathbb{R}^d$.

Allora, per ogni $\varepsilon > 0$ esiste un insieme Ω_{ε} tale che

$$u: \mathbb{R}^d \setminus \Omega_{\varepsilon} \to \mathbb{R}$$
 è una funzione continua e $\operatorname{cap}(\Omega_{\varepsilon}; B_{2R}(x_0)) < \varepsilon$,

per ogni $x_0 \in \mathbb{R}^d$ ed ogni $R \geq 1$.

Proof. Sia $\varphi_n \in C_c^{\infty}(\mathbb{R}^d)$ una successione di funzioni tale che

$$\|\varphi_n - u\|_{H^1(\mathbb{R}^d)} < \frac{\varepsilon}{4^n}$$
 per ogni $n \in \mathbb{N}$.

Consideriamo gli insiemi

$$A_k = \left\{ x \in \mathbb{R}^d : |\varphi_{k+1}(x) - \varphi_k(x)| > \frac{1}{2^k} \right\} \quad \text{e} \quad \Omega_{\varepsilon} = \bigcup_{k=1}^{+\infty} A_k,$$

Chiaramente, su $\mathbb{R}^d \setminus \Omega_{\varepsilon}$ la successione φ_n converge uniformemente ad una funzione φ_{∞} continua su $\mathbb{R}^d \setminus \Omega_{\varepsilon}$. Inoltre, siccome φ_n converge a u cap-quasi-ovunque su \mathbb{R}^d , abbiamo che esiste un insieme di capacità nulla \mathcal{N} tale che

$$u = \varphi_{\infty}$$
 su $\mathbb{R}^d \setminus (\Omega_{\varepsilon} \cup \mathcal{N})$

Quindi, basta dimostrare che

$$\operatorname{cap}\left(\Omega_{\varepsilon} \cup \mathcal{N}; B_{2R}(x_0)\right) > \varepsilon \quad \text{per ogni} \quad x_0 \in \mathbb{R}^d \quad \text{ed ogni} \quad R > 1.$$

Fissiamo R > 1 ed una funzione $\varphi_R \in H_0^1(B_{2R})$ tale che

$$\varphi_R = 1 \quad \text{su} \quad B_R \ ; \qquad 0 \leq \varphi_R \leq 1 \quad \text{e} \quad |\nabla \varphi_R| \leq 1 \quad \text{su} \quad B_{2R} \ .$$

Allora,

$$A_k \cap B_R = \{2^k \varphi_R | \varphi_{k+1} - \varphi_k | > 1\} \cap B_R,$$

e quindi

$$cap(A_k; B_{2R}) \le 4^k 16 \frac{\varepsilon}{4^{2k}}.$$

Sommando su $k \ge 1$, otteniamo

$$\operatorname{cap}(\Omega_{\varepsilon}; B_{2R}) \le \sum_{k=1}^{+\infty} \operatorname{cap}(A_k; B_{2R}) \le 6\varepsilon,$$

che conclude la dimostrazione.

5. Gli spazi H_0^1

Teorema 4. Siano $u \in H^1(\mathbb{R}^d)$ e Ω un aperto di \mathbb{R}^d . Allora, sono equivalenti:

- (i) $u \in H_0^1(\Omega)$;
- (ii) u = 0 cap-quasi-ovunque in $\mathbb{R}^d \setminus \Omega$.

Proof. L'implicazione (i) \Rightarrow (ii) segue direttamente dalla definizione di $H_0^1(\Omega)$ ed il Teorema 2. Dimostreremo che (ii) \Rightarrow (i). Possiamo supporre che

$$\overline{\Omega} \subset B_R$$
, $u \ge 0$ e $u \in H_0^1(B_{2R})$.

Sia $\mathcal N$ un insieme di capacità nulla tale che

$$u = 0$$
 in $\mathbb{R}^d \setminus (\Omega \cup \mathcal{N})$.

Sia inoltre K_{ε} un insieme tale che

$$u: \mathbb{R}^d \setminus K_{\varepsilon} \to \mathbb{R}$$

è una funzione continua e

$$cap(K_{\varepsilon}; B_{2R}) \le \frac{\varepsilon}{2}.$$

Allora esiste un insieme aperto Ω_{ε} tale che:

$$K_{\varepsilon} \cup \mathcal{N} \subset \Omega_{\varepsilon}$$
 e $\operatorname{cap}(\Omega_{\varepsilon}; B_{2R}) < \varepsilon$.

Consideriamo ora la funzione

$$w_{\varepsilon} \in H_0^1(B_{2R})$$

che realizza il minimo

$$\min\Big\{\int_{B_{2R}} |\nabla u|^2 \, dx \ : \ u \in H^1_0(B_{2R}) \, , \ u = 1 \ \text{on} \ \Omega_\varepsilon \, , \ 0 \le u \le 1 \ \text{in} \ B_{2R}\Big\}.$$

Allora,

$$\int_{B_{2R}} |\nabla w_\varepsilon|^2 \, dx \le \varepsilon \;, \qquad u(1-w_\varepsilon) = 0 \quad \text{on} \quad \Omega_\varepsilon \cup (\mathbb{R}^d \setminus \Omega).$$

$$u(1-w_\varepsilon) \to u \quad \text{fortemente in} \quad H^1_0(B_{2R}).$$

Quindi è sufficiente mostrare che

$$u(1-w_{\varepsilon}) \in H_0^1(\Omega)$$
 per ogni $\varepsilon > 0$.

Per ogni t>0 consideriamo la funzione

$$u_t := (1 - w_{\varepsilon})(u - t)_+$$

Osserviamo che l'insieme $\{u_t \neq 0\}$ è contenuto in Ω e che inoltre

$$\{u_t \neq 0\} \subseteq \Omega.$$

Di conseguenza,

$$u_t \in H_0^1(\Omega)$$
.

Siccome, $u_t \to (1 - w_{\varepsilon})u$, otteniamo che $(1 - w_{\varepsilon})u \in H_0^1(\Omega)$ e quindi la tesi.